If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2-18p+24=0
a = 3; b = -18; c = +24;
Δ = b2-4ac
Δ = -182-4·3·24
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6}{2*3}=\frac{12}{6} =2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6}{2*3}=\frac{24}{6} =4 $
| 2k–1=15 | | 5x+12-39=0 | | 3/8b+5=-25/4 | | 1x-7=6x+8 | | 2(x-3)=(x-7)+7 | | 15x-17=8x+10 | | 2=3.14*r2* | | (2q-4)^2=7 | | a/5-9=0 | | ×=x(1/5)+40 | | 2x-15+3x=20 | | 6(x+3)-3(x-1)=4 | | |x+5|=13 | | 12x-22=50 | | (3x-1)(1+2x)=0 | | x*x+24=60 | | 45+5x=95 | | 3(x-5)=5(3-x)-7x | | x*x-16=20 | | 6x=3x+-26 | | 6x=3x+-2 | | 0.5x=185-79 | | 5x-4=122 | | 3z/10+8=-5 | | 4x-8=3x-7x= | | 6x=3x-26 | | 3/5x-2=7/10x | | -5x+5=10x-25 | | 3y-11=90 | | 4z+2=90 | | 90-(4z=2) | | 6y-2(2+y)=3(y+2) |